

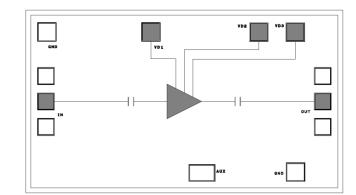
MML704F

V1.0.0 GaAs MMIC Low Noise Amplifier 20-44GHz

Features

- Low Noise Amplifier (Single DC Biased)
- Frequency: 20 44GHz
- Small Signal Gain:
 - 23dB@20GHz 15dB@44GHz Typical
- Gain Flatness: ±3.0dB Typical
- Noise Figure:2.8dB Typical
- P1dB: 13dBm Typical
- Power Supply: +2.5V/160mA
- Input/Output: 50Ω
- Chip Size: 1.85 x 1.05 x 0.1mm

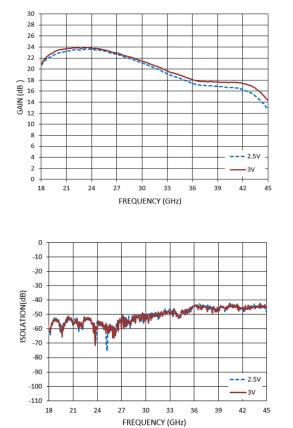
Typical Applications

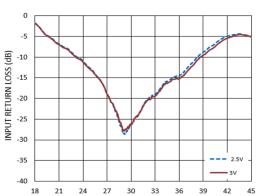

- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

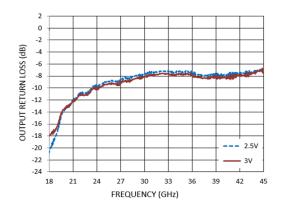
Electrical Specifications

TA = +25°C, VD1 = VD2 = VD3 = 2.5V, IDD = 160mA Typical

Parameters	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency	20-30		30-44			GHz	
Small Signal Gain	20.0	23.5			18.5		dB
Gain Flatness		±1.5			±2.5		dB
Noise Figure		2.8			3.2		dB
P1dB - Output 1dB Compression	11	14		9	11		dBm
Past - Saturated Output Power		15			12		dBm
OIP3 - Output Third Order Intercept		28			24		dBm
Input Return Loss		10			10		dB
Output Return Loss		10			8		dB

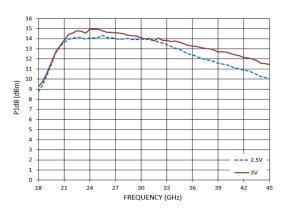

Functional Block Diagram

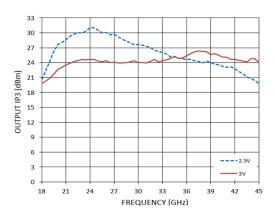




V1.0.0 GaAs MMIC Low Noise Amplifier 20-44GHz

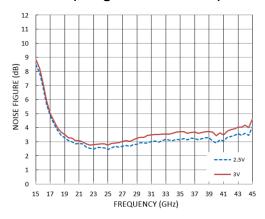
Measurement Plots: S-parameters

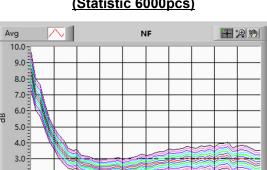


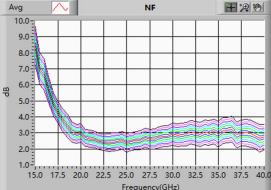


FREQUENCY (GHz)

Measurement Plots: P1dB


Measurement Plots: OIP3




GaAs MMIC Low Noise Amplifier V1.0.0 20-44GHz

Measurement Plots: Noise Figure (6 Sigma Worst Case)

Measurement Plots: Noise Figure (Statistic 6000pcs)

Absolute Maximum Ratings

Drain Bias Voltage (VD)	+4V
RF Input Power (RFIN)(VD=+2.5V)	+10 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C)(derate 24 mW/°C above 85 °C)	+25dBm
Thermal Resistance (channel to die bottom)	50°C/W
Operating Temperature	-55 to +85 °C
Storage Temperature	-55 to +150 °C

Typical Supply Current vs. VD

VD (V)	IDD (mA)
+2.5	160
+3	205

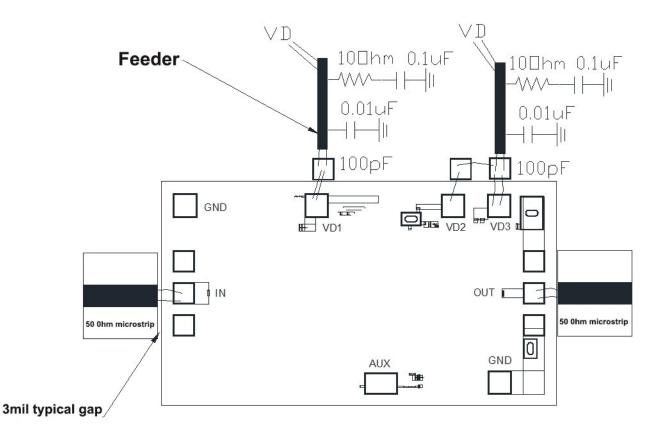
ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

.0 GaAs MMIC Low Noise Amplifier 20-44GHz

Outline Drawing:

All Dimensions in $\boldsymbol{\mu}\boldsymbol{m}$

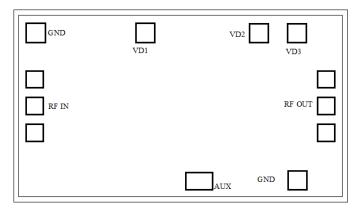
Notes:


- 1. Die thickness: 100um
- 2. DC bond pad is 100 x 100 μ m²
- 3. RF IN/OUT bond pad is 100 x 100 μm^2
- 4. DC bond pad is 100 x 100 μm^2
- 5. No DC Blocking Capacitor needed for RF input & RF output
- 6. Bond pad metalization: Gold
- 7. Backside metalization: Gold
- 8. Backside of the die (GND)

MML704F

V1.0.0 GaAs MMIC Low Noise Amplifier 20-44GHz

Assembly Drawing



No	Function	Description
1	RF IN	Signal input terminal, connected to 50Ω circuit
2	RF OUT	Signal output terminal, connected to 50Ω circuit
3	VD1,VD2,VD3	Connect to external 100pF and 0.01uF bypass capacitors.
9	GND1, GND2	Ground pad.

MML704F

V1.0.0 GaAs MMIC Low Noise Amplifier 20-44GHz

Biasing and Operation

Performance is optimized when the drain voltage VD1 and VD2 and VD3 is set to +2.5 V.

Turn ON procedure:

- 1. Connect Input and Output with 50 Ohm source/load.
- 2. Apply positive drain voltage VD1 and VD2 and VD3 set to +2.5V
- 3. Apply RF signal

Turn OFF procedure:

- 1. Turn off RF signal
- 2. Turn off positive drain voltage VD1 and VD2 and VD3

Miller MMIC Inc. All rights reserved

Miller MMIC, Inc. holds exclusive rights to the information presented in its Data Sheet and any accompanying materials. As a premier supplier of cutting-edge RF solutions, Miller MMIC has made this information easily accessible to its clients.

Although Miller MMIC believes the information provided in its Data Sheet to be trustworthy, the company does not offer any guarantees as to its accuracy. Therefore, Miller MMIC bears no responsibility for the use of this information. It is worth mentioning that the information within the Data Sheet may be altered without prior notification.

Customers are encouraged to obtain and verify the most recent and pertinent information before placing any orders for Miller MMIC products. The information in the Data Sheet does not confer, either explicitly or implicitly, any rights or licenses with regards to patents or other forms of intellectual property to any third party.

The information provided in the Data Sheet, or its utilization, does not bestow any patent rights, licenses, or other forms of intellectual property rights to any individual or entity, whether in regards to the information itself or anything described by such information. Furthermore, Miller MMIC products are not intended for use as critical components in applications where failure could result in severe injury or death, such as medical or life-saving equipment, or life-sustaining applications, or in any situation where failure could cause serious personal injury or death.